Thermal conductivity and large isotope effect in GaN from first principles.

نویسندگان

  • L Lindsay
  • D A Broido
  • T L Reinecke
چکیده

We present atomistic first principles results for the lattice thermal conductivity of GaN and compare them to those for GaP, GaAs, and GaSb. In GaN we find a large increase to the thermal conductivity with isotopic enrichment, ~65% at room temperature. We show that both the high thermal conductivity and its enhancement with isotopic enrichment in GaN arise from the weak coupling of heat-carrying acoustic phonons with optic phonons. This weak scattering results from stiff atomic bonds and the large Ga to N mass ratio, which give phonons high frequencies and also a pronounced energy gap between acoustic and optic phonons compared to other materials. Rigorous understanding of these features in GaN gives important insights into the interplay between intrinsic phonon-phonon scattering and isotopic scattering in a range of materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.

Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Galli...

متن کامل

Modeling of the Thermal Conductivity of Polycrystalline GaN Films

We present preliminary results of a theoretical investigation of the thermal conductivity of polycrystalline GaN films. It is assumed that grain boundaries play a major role in limiting the thermal conductivity, which is calculated using the phononhopping transport approach. The effect of the grain size, size dispersion, and inter-grain interface structure on the thermal conductivity values is ...

متن کامل

On Designing of Membrane Thickness and Thermal Conductivity for Large Scale Membrane Distillation Modules

Membrane distillation has the potential to concentrate solutions to their saturation level, thus offering the possibility to recover valuable salts from the solutions. The process performance and stability, however, is strongly dependent upon the features of membranes applied. In addition, several other parameters, membrane thickness and thermal conductivity significantly affect the process per...

متن کامل

Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable?

We present an ab initio study which identifies dominant effects leading to thermal conductivity reductions in carbon and boron-nitride nanotubes with isotope disorder. Our analysis reveals that, contrary to previous speculations, localization effects cannot be observed in the thermal conductivity measurements. Observable reduction of the thermal conductivity is mostly due to diffusive scatterin...

متن کامل

A Comparative Study of Ab - Initio Thermal Conductivity Ap - proaches : The Case of Cubic Boron Nitride SAIKAT

Submitted for the MAR13 Meeting of The American Physical Society A Comparative Study of Ab-Initio Thermal Conductivity Approaches: The Case of Cubic Boron Nitride SAIKAT MUKHOPADHYAY, Cornell University, LUCAS LINDSAY, Naval Research Laboratory, DAVID BROIDO, Boston College, DEREK STEWART, Cornell University — Given its high strength and large thermal conductivity, cubic boron nitride (cBN) pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 109 9  شماره 

صفحات  -

تاریخ انتشار 2012